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Abstract

We examine Dropout through the perspective of interactions: learned effects that combine multiple
input variables. Given N variables, there are O(N2) possible pairwise interactions, O(N3) possible
3-way interactions, etc. We show that Dropout implicitly sets a learning rate for interaction effects
that decays exponentially with the size of the interaction, corresponding to a regularizer that balances
against the hypothesis space which grows exponentially with number of variables in the interaction. This
understanding of Dropout has implications for the optimal Dropout rate: higher Dropout rates should
be used when we need stronger regularization against spurious high-order interactions. This perspective
also issues caution against using Dropout to measure term saliency because Dropout regularizes against
terms for high-order interactions. Finally, this view of Dropout as a regularizer of interaction effects
provides insight into the varying effectiveness of Dropout for different architectures and data sets. We
also compare Dropout to regularization via weight decay and early stopping and find that it is difficult to
obtain the same regularization effect for high-order interactions with these methods.

1 Introduction
Deep neural networks have the representational capacity to learn high-order interactions of the input features.
Given N variables, there are O(N) possible main effects, O(N2) possible pairwise interactions, O(N3) possible
3-way interactions, O(N4) possible 4-way interactions, etc. Despite the exponentially increasing number
of potential high-order interactions, DNNs do not massively overfit by learning many spurious high-order
interactions. Why?

In this paper, we explore the inductive bias of Dropout and ask how it helps DNNs generalize well. We
show that Dropout contributes a regularization effect which helps neural networks explore simple functions of
lower-order interactions before considering less-supported functions of higher-order interactions. Dropout
imposes this regularization by reducing the effective learning rate of interaction effects, and this regularization
is stronger for higher-order interactions of more variables. As a result, Dropout encourages models to stay
closer to additive models.

To show this, we decompose the function estimated by neural networks according to the weighted functional
ANOVA decomposition of [1] into effects of single variables, effects of pairs of variables, triples of variables,
and so on. This decomposition allows us to measure the precise interaction effect sizes estimated by a
variety of neural network architectures. As shown in Figure 1, more Dropout results in networks with weaker
interaction effects, the strength of regularization growing exponentially with interaction order to offset the
exponential growth in hypothesis space.
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Figure 1: Empirical demonstration of how Dropout regularizes
against learning spurious interactions of different degrees (the
number of variables in the interaction). At each level of Dropout
we decompose the learned network into orthogonal functions of k
input variables: k = 1 are effects for single variables (blue), k = 2
are interaction effects for pairs of variables (orange), k = 3 are
interaction effects for triplets of variables (red), and interaction
effects for degree k ≥ 4 are included as a single term (red). As
Dropout increases, the learned model is composed of a higher
proportion of low-order effects. The values shown are (mean ± std)
of the decomposition over 10 training iterations. See Section 4.1
for more details.

2 Related Work
In its original proposal, Dropout was motivated to prevent “complex co-adaptations in which a feature detector
is only helpful in the context of several other specific feature detectors"[2, 3]. While this explanation is
certainly motivating, many questions remain: Is the expectation of the Dropout output the same as the model
output without Dropout? Does Dropout change the trajectory of the model during optimization? These
questions are important because Dropout has been used as a method for Bayesian uncertainty [4, 5, 6, 7],
which implicitly assume that Dropout does not bias the model’s output. The use of Dropout as a tool for
uncertainty quantification has been questioned due to its failure to separate aleotoric and epistemic sources
of uncertainty [8] (i.e., the uncertainty does not decrease even as more data is gathered). In this paper we
ask a separate question: Does Dropout treat all parts of the learned model equivalently?

Significant work has focused on the effect of Dropout as a regularizer of weights, including its properties of
structured shrinkage [9] or adaptive regularization [10]. However, interpreting the action of Dropout through
the lens of weights can produce counter-intuitive results such as a negative regularization penalty [11].

Instead of focusing on the influence of Dropout on parameters, we take a nonparametric view of neural
networks as function approximators and query the input-output change. Thus, our work is similar in spirit
to [12], which showed a linear relationship between keep probability and the Rademacher complexity of
the model class. Our investigation finds that Dropout preferentially targets high-order interaction effects,
resulting in learned models that generalize better by ignoring (or significantly down-weighting) high-order
interaction effects that are typically spurious or difficult to learn correctly from limited training data.

3 Interaction Effects
In this paper, we use the concept of pure interaction effects from [13]. According to this definition, a pure
interaction effect is variance explained by a group of variables u that cannot be explained by any subset of
u. This definition is equivalent to the functional ANOVA decomposition of the overall function F : Given a
density w(X) and Fu ⊂ L2(Ru) the family of allowable functions for variable set u, the weighted functional
ANOVA [1, 14, 15] decomposition of F (X) is:

{fu(Xu)|u ⊆ [d]} = argmin
{gu∈Fu}u∈[d]

∫ ( ∑
u⊆[d]

gu(Xu)− F (X)
)2
w(X)dX,

where [d] indicates the power set of d features, such that

∀ v ⊆ u,

∫
fu(Xu)gv(Xv)w(X)dX = 0 ∀ gv, (1a)

i.e., each member fu is orthogonal to the members which operate on a subset of the variables in u. Once this
decomposition has been found, we have a set of functions fu which all have zero-mean and can be analyzed
independently. We say that an interaction effect fu is of order k if |u| = k.
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(a) ρ = 0.01
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(b) ρ = 0.99

Figure 2: A toy example of decomposing a function into pure interaction and main effects. In each (a) and
(b), there are four panes: (left) an overall function, (middle left) a pure interaction effect of X1 and X2,
(middle right) a pure effect of X1, and (right) a pure effect of X2. In both a and b, the overall function is
Y = X1X2, but the decomposition changes based on the coefficient ρ of correlation between X1 and X2. For
X1 and X2 uncorrelated, the multiplication is a pure interaction effect; for X1 and X2 correlated, much of
the variance can be moved into effects of the individual variables. The decomposition is unique given the
joint distribution of the three variables.

This definition is intrinsically linked to the functional ANOVA decomposition which provides a unique
decomposition of an overall function into functions of sets of variables according to a data distribution. Thus,
interaction effects can only be defined while simultaneously defining a data distribution. An example of this
interplay between the data distribution and the interaction definition is shown in Figure 2.

As [13] describe, the correct distribution to use is the data-generating distribution p(x). In studies on
real data, estimating p(x) is one of the central challenges of machine learning; for this paper, we use only
simulation data for which we know p(x) and can precisely study the effects of Dropout.

While multiplicative terms like X1X2 are often used to encode “interaction effects", they are only pure
interaction effects if X1 and X2 are uncorrelated and have mean zero. When the two variables are correlated,
some portion of the variance in the outcome X1X2 can be explained by main effects of each individual variable
(e.g. if X1 and X2 are perfectly correlated, X1X2 = X2

1 ). Note, however, that correlation between two input
variables does not imply an interaction effect on the outcome, and an interaction effect of two input variables
on the outcome does not imply correlation between the variables.

3.1 The Unreasonable Effectiveness of Models with Few Interaction Effects
Generalized additive models (GAMs) [16] are a restrictive model class which estimate functions of individual
features, i.e., functions of the form f(Xi, . . . , Xp) =

∑p
i=1 gi(Xi). There have been a large number of methods

for estimating these functions, including functional forms such as splines, trees, wavelets, etc. [17, 18, 19].
While vanilla GAMs describe nonlinear relationships between each feature and the label, interactions are
sometimes added to further capture relationships between multiple features and the label [20, 21, 22].

In the age of deep learning, it is surprising that GAMs with a small number of added interaction effects
could be state-of-the-art on any dataset with a moderately large number of samples. However, successful
tree-based ensembles such as XGBoost [23] often require only a few interaction effects to win competitions
[24]. In certain cases, polynomial regression of order 2 can be competitive with fully-connected deep neural
networks [25], and even generalized additive models have a surprising capability to approximate deep neural
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networks [26]. Similar phenomena have been observed for Gaussian Processes [27] and computer vision models
[28, 29, 30]. How are these models, which ignore the majority of interaction effects, so effective?

3.2 Statistical (Un)Reliability of Interaction Effects
One reason why models which ignore high-order interaction effects can perform so well is the tremendous
difficulty that higher-order interaction effects present to learning algorithms. When trying to learn high-order
interaction effects, we are stuck between a rock and a hard place: the number of possible interaction effects
grows exponentially (the number of k-order interaction effects possible from N input features is

(
N
k

)
, while

the the variance of an interaction effect grows with the interaction order [31]. This quandry is intensified
when the effect strength decreases with interaction order, which is reasonable for real data [32]. It is like
searching for a needle in a haystack, but as we increase k, the haystack gets larger and the needle gets smaller.
For large k, we are increasingly likely to select spurious effects rather than the true effect – at some point it
is better to stop searching the haystack. Viewed this way, it is less surprising that in the absence of prior
knowledge of which interaction effects are true, simple models are able to outperform large models.

3.3 Measuring Interaction Effects in Trained Neural Networks
The function F̂ (X) learned by a neural network can be decomposed as: F̂ (X) =

∑
u∈[d] f̂u(Xu) by the

functional ANOVA (Eq. 1a). We will use this decomposition to measure the interaction effects implicit in the
F̂ estimated by a neural network. To approximate this decomposition, we repeatedly apply model distillation
[33, 34] using the XGBoost software package [23]. First, we train boosted stumps (XGBoost with max depth
of 1) to approximate the output of the neural network using only main effects of individual variables. We
successively increase the maximum depth of trees (corresponding to an increase in the maximum order of
interaction effect permitted). By training on the residuals of the previous model, we ensure that the estimated
effects are orthogonal. In the remainder of this paper, we will refer to VarX(f̂u(X)) as the effect size of an
estimated effect f̂u.

4 Dropout Regularizes Interaction Effects
Dropout operates by probabilistically setting values to zero. For clarity, we call this “Input Dropout" if the
perturbed values are input variables, and “Activation Dropout" if the perturbed values are activations of
hidden nodes.

Input Dropout, which targets the input variables, is equivalent to augmenting the training dataset with
samples drawn from a perturbed distribution:

Theorem 1. Let E[Y |X] =
∑

u∈[d] fu(Xu) with E[Y ] = 0. Then Input Dropout at rate p has

E[Y |X �M ] =
∑
u∈[d]

(1− p)|u|fu(X) (2)

where M is the Dropout mask and � is element-wise multiplication. Without changing the outcomes Y ,
Input Dropout drives the conditional expectation of Y |X �M toward the expectation of Y . Furthermore,
it acts by preferentially targeting high-order interactions: the scaling factor grows exponentially with |u|.
Because the distribution of training data is actually different for different levels of Input Dropout, DNNs
will converge to different optima based on the level of Input Dropout, i.e., Input Dropout introduces bias.
Finally, because Input Dropout acts on the data distribution, not the model, it has the same effect on learning
regardless of the downstream net architecture:

Theorem 2. Let ∇u be the gradient update for an interaction effect u. The expected concordance between
the gradient with Input Dropout and the gradient without Input Dropout is:

E
M

[
∇u(Xu, Y ) · ∇u(Xu �M,Y )

‖∇u(Xu, Y )‖

]
= (1− p)|u|∇u(Xu, Y ). (3)
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(a) Total Effect: Act. Dropout
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(b) Total Effect: Input Dropout

0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0

2

4

6

8

10

12

14

Ef
fe

ct
 S

ize

k = 1
k = 2
k = 3
k 4

(c) Total Effect: Input + Act.
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(d) Norm. Effect: Act. Dropout
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(e) Norm. Effect: Input Dropout
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(f) Norm. Effect: Input + Act.
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(g) Shrinkage: Act. Dropout
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(h) Shrinkage: Input Dropout
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(i) Shrinkage: Input + Act.

Figure 3: In this experiment, we train fully-connected neural networks on a dataset of pure noise (details
in Sec. 4.1). Displayed values are the (mean ± std. over 10 initializations) of the trained model’s variance
explained by each order of interaction effect. Activation and Input Dropout both significantly reduce the
effect sizes of the learned high-order interactions. The top row of graphs (a–c) shows the absolute variance of
the models for different values of Dropout — as Dropout grows, overfitting is reduced and the variance of
the predictions converges towards zero. The middle row (d–f) shows the relative effect sizes of interactions,
making it easier to see how the Dropout rate affects each degree of interaction. The bottom row (g–i) shows
the effects normalized by their strength in the unregularized model to visualize the shrinkage effect of Dropout
for each degree of interaction.

5



0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0

2

4

6

8

10

12
Ef

fe
ct

 S
ize

k = 1
k = 2
k = 3
k 4

(a) Total Effect: Activation Dropout
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(b) Total Effect: Input Dropout
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(c) Total Effect: Input + Activation
Dropout
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(d) Normalized Effect: Activation
Dropout
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(e) Normalized Effect: Input
Dropout
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(f) Normalized Effect: Input + Ac-
tivation
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(g) Shrinkage: Activation Dropout
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(h) Shrinkage: Input Dropout
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(i) Shrinkage: Input + Activation
Dropout

Figure 4: In this experiment, we train fully-connected neural networks on a dataset of pure noise (details
in Sec. 4.1). Displayed values are the (mean ± std. over 10 initializations) of the proportion of the trained
model’s variance explained by each order of interaction effect. All neural networks in this figure have 128
units in each hidden layer (compared to 32 units per layer in Figure 3), and we see that Activation Dropout
has only a small impact, while Input Dropout significantly reduces the estimated effect sizes of the high-order
interactions. As expected, increasing the size of the hidden layers from 32 in Figure 3 to 128 in this Figure
decreases the impact of Activation Dropout on high-order interactions, but does not reduce the effectiveness
of Input Dropout.
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Figure 5: The growing hypothesis space of potential interaction effects is balanced against the effective
learning rate imposed by Dropout. In this figure, we plot the product of the effective learning rate (rp(k))
and the number of potential interaction effects of order k (Hk) for a variety of Dropout rates p. In a, we plot
these values on a log scale for the entire range of potential interaction orders for an input of 25 features. In b,
we plot up to order 4 on a linear scale.

In this paper we will refer to rp(k) = (1− p)k as the effective learning rate of an interaction of order k
with Input Dropout at rate p. In addition to the decreased learning rate, the disruption in the gradient signal
can also interplay with other mechanisms of adaptive optimizers (e.g., momentum).

Activation Dropout, which targets activations of hidden layers, can be seen as a form of Input Dropout
applied to each layer, but with input variables that correspond to the representation learned at each layer.
To reduce the order of interaction effects necessary at layer l, a neural network can learn more informative
neurons at layer l − 1. This would produce hidden units which are “specialized" to specific output values, an
effect which has been recently observed by [35].

4.1 Dropout Decreases the Reliance of Neural Networks on Spurious Interac-
tion Effects

As described above, Dropout does not simply add unbiased noise to the gradient updates; instead, Dropout
exerts an unceasing force throughout the optimization process. This means that Dropout changes the
steady-state optima of the model. To see this, we examine a set of neural networks trained to convergence
with varying levels of Dropout. In this experiment, we use a simulation setting in which there is no signal
(so any estimated effects are spurious). This gives us a testbench to easily see the regularization strength of
different levels of Dropout. Specially, we generate 1500 samples of 25 input features where Xi ∼ Unif(−1, 1)
and Y ∼ N(0, 1). We optimize neural networks with 3 hidden layers and ReLU nonlinearities and measure
effect sizes as described in Sec. 3.3. In Fig. 3, we see the results for neural networks with 32 units in each
hidden layer. For this small network, both Activation and Input Dropout have strong regularizing effects
on a neural net. Not only do they reduce the overall estimated effect size, both Activation and Input
Dropout preferentially target higher-order interactions (e.g., the proportion of variance explained by low-order
interactions monotonically increases as the Dropout Rate is increased for Figs. 3d,3e, and 3f. In Fig. 4, we
see results from the same experiment on neural networks with 128 units in each hidden layer. For these
larger networks, Activation Dropout has a minimal effect on regularizing away interaction effects (e.g., the
proportion of variance explained by low-order interactions does not change significantly until a Dropout rate
of 0.5 is reached in Fig. 4d). However, as our analysis predicts, Input Dropout is just as strong for this larger
network as it was for the smaller network (Fig. 4e).
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k Dropout Rate
0.0 0.125 0.25 0.375 0.5 0.625

1 0.52± 0.01 0.54± 0.01 0.54± 0.03 0.57± 0.02 0.55± 0.02 0.47± 0.02
2 0.39± 0.01 0.38± 0.03 0.40± 0.02 0.40± 0.01 0.38± 0.01 0.27± 0.02
3 0.39± 0.01 0.41± 0.01 0.41± 0.01 0.40± 0.02 0.40± 0.02 0.27± 0.04

Table 1: Test accuracies of the models trained on the modified 20-Newgroups datasets (Sec. 4.3). Reported
values are (mean ± std) of the test accuracies over 5 experiments, with the best setting in each row bolded.
Each row indicates k, the order of the added interaction effect. As k is increased, lower levels of Dropout
tend to outperform. Different modifications of the dataset chnage the difficulty of the task, so the accuracy
values are not directly comparable across rows.

4.2 Symmetry Between Dropout Strength and Number of Interaction Effects
From N input features, there are

(
N
k

)
distinct k-order interaction effects which could be estimated. Without

any regularization, high-order interactions would dominate. However, the effective learning rate of k-order
interactions decays exponentially with k. This is a beautiful symmetry with

(
N
k

)
, which is upper-bounded

by Nk. As shown in Fig 5, the exponential growth of the hypothesis space Hk with interaction order is
balanced by the exponential decay of the effective learning rate, provided strong regularization against
spurious high-order interaction methods.

4.3 20 NewsGroups
This understanding of Dropout as a regularizer against high-order interaction effects suggests that Dropout
should be used at higher rates where we would like to regularize against high-order interaction effects. To
test this guideline, we use the classic 20-NewsGroups dataset 1. This dataset contains documents from 20
different news organizations, leading to a natural 20-way classification task. To test our hypothesis about
the mechanism of action for Dropout, we modify this dataset by adding k new features (each feature is IID
Unif(0, 1)) and a 21st class which is the correct label if all of the k new features take on a value greater than
0.5. This modified dataset therefore has a strong k-way interaction effect, and as k grows, we would expect
the optimal Dropout rate to be lower. Results are shown in Table 1. As predicted by our understanding of
Dropout, indeed the optimal Dropout rate is lower for larger k.

4.4 Do Other Regularizers Penalize Interaction Effects?
Seeing that Dropout regularizes against interaction effects, it is natural to ask whether other effective
regularizers of neural networks also achieve better generalization by penalizing high-order interaction effects.
Here, we examine early stopping and weight decay as potential regularizers of interaction effects. We find that
neither of these regularization techniques specifically target interaction effects. However, because Dropout
acts by changes the effective learning rate of interaction effects, it can act in concert with early stopping to
magnify the regularization against interaction effects. This interplay between Dropout and early stopping is
demonstrated in Figure 6.

4.5 Early Stopping
It has long been known that the effective size of neural networks increases over training epochs [36], and
recent work has supported this view that randomly-initialized neural networks represent simple functions
which are made more complex through training [37, 38]. Thus, it makes sense that early stopping can be
extremely helpful for selecting generalizable models [39, 40].

To answer the question of how early stopping interplays with the Dropout-induced effective learning
rates, we study the learned effects over the course of optimization. We generate 1500 samples of 25 input
features where Xi ∼ Unif(−1, 1) and the target is generated according to one of three settings: (1) only

1urlhttp://qwone.com/ jason/20Newsgroups/
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Figure 6: Learned interaction effects and model accuracies over training epochs. Each row corresponds to a
different generator function described in Sec. 4.5; the top row has only true 1-way interactions, the middle
row has only true 2-way interactions, and the bottom row has only true 3-way interactions. The models with
low settings of Dropout tend to massively overfit the data due to a reliance on spurious high-order interaction
effects. Since Dropout slows down the learning of these spurious high-order effects, early stopping is doubly
effective in combination with Dropout.

main effects: Y ∼ N(sin(X0) + cos(X1), σ
2), (2) only pair effects: Y ∼ N(sin(X0) cos(X1), σ

2), and (3) only
three-way effects: Y ∼ N(sin(X0) cos(X1)X2, σ

2). We optimize neural networks with 3 hidden layers and
ReLU nonlinearities and measure effect sizes as described in Sec. 3.3. As shown in Fig. 6, the models with
low settings of Dropout tend to massively overfit the data due to a reliance on spurious high-order interaction
effects. Since Dropout slows down the learning of these spurious high-order effects, early stopping is doubly
effective in combination with Dropout.

4.6 Weight Decay
Another popular regularization mechanism is weight decay: placing an `2 penalty on the weights of the
network. We study weight decay on the same data generator as we studied Dropout in Sec. 4.1. As the
results in Fig. 7 show, strong weight decay (large values of λ) has a modest effect of regularizing against
interaction effects. However, achieving the same practical benefit as Dropout provides is untenable due to the
training instability that strong weight decay introduces: when weight decay was set larger than about 0.2 the
DNNs learned simple constant functions.
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Figure 7: Strong weight decay can have a mild regularization effect against interaction effects; however, the
regularization effect comparable to Dropout occurs at extremely strong weight decay for which training is
very unstable.

5 Discussion and Implications
In this paper, we examined a specific mechanism by which Dropout works: by regularizing higher-order
interaction effects. We see that Dropout does not simply introduce unbiased noise into learning — training
with higher levels of Dropout produces models that are likely to learn weaker interaction effects. This
explanation of Dropout has several implications for its use and crystallizes some of the conventional wisdom
regarding how and when to use Dropout.

5.1 Dropout For Explanations
While Dropout has been used for measures of model confidence [4, 5] and to aid model interpretability [6, 7],
it does not equally affect all things that DNNs might learn. This must be taken into consideration both when
using Dropout to query what a model has learned and what patterns are or are not present in the data. For
example, it has been reported that there are important 2nd and 3rd order interactions in the New York City
Bike Share data [26], but a DNN trained with a high Dropout rate might be biased to put less strength on
these effects than other learning algorithms or DNNs trained with a lower Dropout rate. Thus one should be
careful when interpreting what DNNs trained with different Dropout rates tell us about patterns in the data.

5.2 Setting Dropout Rate
The Dropout rate probably should be set according to the magnitude of the spurious pairwise interactions
the un-regularized DNN is likely to learn. If the dataset is large or sufficient augmentation can be performed,
lower rates of Dropout can be used or it can be omitted entirely[41].

Larger Dropout Rates in Deeper Layers In addition, it is often suggested to use larger Dropout rates
in deeper layers than in initial layers [42]. This conventional wisdom is explained by the interaction view:
initial layers are for representation learning which likely requires interactions between input features and
low-level learned features, while deeper layers are less about representation learning and focus more on making
predictions, something which probably depends more on summing evidence from multiple sources than on
learning complex high-order interactions.

Convolutional Nets In CNNs, Dropout is typically used at lower rates than in fully-connected networks
[43]. In convolutional nets, the convolutional architecture creates strong constraints that prevent arbitrary
high-order interactions of distant input features from being learned, while promoting the formation of tight
interactions among adjacent features. In other words, convolutional nets create a strong bias for or against
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different kinds of interaction effects via architecture and thus depend less on a mechanism like Dropout to
regularize interactions.

5.3 Explicitly modeling Interaction Effects
In this investigation, we have seen that the main challenge of estimating interaction effects is the hypothesis
space which grows exponentially with the order of the interaction effect. If we were able to hone down
the hypothesis space by specifying a small number of interaction effects before looking at data, our models
could efficiently learn the correct parameters for these few interactions from data. Several recent works have
proposed to do this by explicitly modeling interaction effects in neural networks. Of particular note is [44],
which proposed to explicitly use multiplicative interactions as a means of combining data modalities 2 The
authors found that many common architectures can be seen in the lens of multiplicative interactions, and
these multiplicative interactions help in multitask problems (but hurt in standard MNIST/CIFAR problems).
These works make sense given the difficulty of picking interaction effects from the exponentially-growing
haystack of possible interactions: if we know a priori which high-order interactions exist, it is better to
explicitly model them rather than hope the deep model learns them from data.

Another approach to explicitly model interaction effects is the Deep and Cross Network [45], which uses
a two-part architecture consisting of a fully-connected network and a “cross" network in which each layer
has its activation crossed with the vector of input variables before being transmitted to the next layer. This
“cross" network increases the interaction order at every layer. Interestingly, the experiments of [45] (especially
Fig. 3 within) show that the best-performing architecture has only a single cross layer – this is exactly what
we would expect based on the amount of spurious interaction effects which the model is otherwise capable of
learning.

Finally, we can see these experiments as another view on the success of convolutional neural networks:
when interaction effects are important (such as in image recognition), it is important to make the form
of expected interactions explicit. High-order interaction effects in the data are not strong enough to cut
through the hypothesis space of all potential interaction effects, so explicitly encoding the form can make a
tremendous difference in model accuracy.

6 Conclusions
In this paper, we have examined a concrete explanation of Dropout as a regularization against interaction
effects. We have shown that the effective learning rate of interaction effects decreases exponentially with
the order of the interaction effect, a crucial balance against the exponentially-growing number of potential
interactions of k variables. Although Dropout can work in concert with weight decay and early stopping,
these do not naturally achieve Dropout’s regularization against high-order interactions. By reducing the
tendency of neural networks to learn spurious high-order interaction effects, Dropout helps to train models
which generalize more accurately to test sets.
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A Proof of Theorem 1
Proof. Let E[Y |X] =

∑
u∈[d] fu(Xu) and E[Y ] = 0. Then with Input Dropout,

E[Y |X �M ] =
∑
u∈[d]

P (X �M = X)fu(Xu) +
(
1− P (X �M = X)

)
E[fu(Xu �M+)] (4a)

=
∑
u∈[d]

(1− p)|u|fu(Xu) +
(
1− (1− p)|u|

)
E[fu(Xu �M+)] (4b)

=
∑
u∈[d]

(1− p)|u|fu(Xu) +
(
1− (1− p)|u|

) ∫
fu(Xu\v, Xv)dXv for some v ∈ u

(4c)

=
∑
u∈[d]

(1− p)|u|fu(Xu) (4d)

where M+ is drawn uniformly from the Dropout masks with at least one zero value and the final equality
holds by the orthogonality condition of the functional ANOVA decomposition (Eq. 1b in the main text).

B Proof of Theorem 2
Proof.

E
M
[
∇u(Xu, Y ) · ∇u(Xu �M,Y )

‖∇u(Xu, Y )‖
] (5a)

= (1− p)|u|∇u(Xu, Y ) +
1

‖∇u(Xu, Y )‖
(
1− (1− p)|u|

)
E

M+
[∇u(Xu �M+, Y )] (5b)

= (1− p)|u|∇u(Xu, Y ) (5c)

where the final equation holds by the orthongonality of functional ANOVA.
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